sobota, 15 lipca 2017

NIEMOŻLIWOŚĆ PRZEWIDZENIA I KONTROLI WYNIKU MANIPULACJI GENETYCZNEJ

Znalezione obrazy dla zapytania NIEMOŻLIWOŚĆ PRZEWIDZENIA I KONTROLI WYNIKU MANIPULACJI GENETYCZNEJ

Niemożliwość całkowitej kontroli biotechnologii i przewidzenia wyniku działania modyfikacji genetycznych na organizmy produkujące żywność zależy od trzech czynników: złożoności organizmu otrzymującego geny; tendencji manipulowanego rekombinowanego DNA do indukowania powstawania mutacji w losowych miejscach genomu organizmu odbiorcy; i niejednoznaczności oraz specyficzności komórkowej w zakresie regulowania informacji genetycznej.

1. Biologiczna złożoność organizmu prowadzi do niemożności kontrolowania lub przewidzenia wyniku manipulacji rekombinowanych DNA.


Ważnym czynnikiem nieprzewidywalności wyniku działania inżynierii genetycznej jest złożoność organizmu odbiorcy. Struktury i funkcje nawet najprostszych mikroorganizmów jednokomórkowych są odpowiednio skompilowane i badacze nie są w stanie wziąć pod uwagę wszystkich składników systemu, gdy rozważają wpływ danej zmiany genetycznej.

W takiej sytuacji niespodzianki są nieuniknione i wiele z nich będzie niekorzystnych. Przykłady takich właśnie niespodzianek zawierają  mechanizmy, dzięki którym manipulacje genetyczne mogą prowadzić do zwiększonej zdolności wywoływania alergii i toksyczności.

2. Mutacje w wyniku manipulacji rekombinacyjnej DNA.


Drugim źródłem niepewności co do efektów manipulacji rekombinowanym DNA są aktualnie stosowane nadzwyczaj grube (niedokładne) techniki przenoszenia genów. Informacja genetyczna może być precyzyjnie zdefiniowana co do sekwencji, ale jest wstawiana losowo do genomu organizmu odbiorcy. Każde wprowadzenie genów jest w rzeczywistości losowym przypadkiem mutagennym.

Inaczej mówiąc, przeniesienie genów metodą, jaką się obecnie stosuje, jest procesem mutagennym mogącym zakłócić każdy proces, w którym biorą udział DNA i RNA. Miejsca, w których takie mutacje występują, będą losowe. To oznacza, że nie można przewidzieć, który gen lub regulator procesu zostanie zakłócony w wyniku mutagenezy indukowanej poprzez przenoszenie genów.

Poprzez inaktywację lub zmianę ekspresji genów kodujących enzymy, które katalizują procesy biosyntezy, przypadki mutagenne mogą zmienić zdolności powodowania alergii przez żywność lub powodować jej toksyczność. Przypadki mutagenezy mogą również prowadzić do zmian wartości pokarmowej żywności. Co więcej, poprzez zmianę normalnie obecnej, regulującej sekwencji genetycznej w genomie organizmu odbiorcy można spowodować taką samą różnorodność problemów związanych z sekwencją genetyczną.

Należy podkreślić, że w większości stosowanych metod przenoszenia genów ten proces mutacyjny będzie ZAWSZE występował przy wstawianiu zrekombinowanego genu do genomu organizmu. Każdy taki przypadek zakłóca jakąś naturalną sekwencję DNA. Wiele takich zakłóceń będzie szczęśliwie nie ujawnionych lub nieskutecznych, niemniej istnieje określona szansa, że jedno z nich zmieni strukturę lub funkcję organizmu w sposób, który wpłynie istotnie na właściwości żywności uzyskanej z takiego organizmu. To znaczy, że zmiany genetyczne mają określone prawdopodobieństwo zmieniania właściwości organizmu tak, że właściwości wytworzonej przezeń żywności będą niebezpieczne dla zdrowia. W większości przypadków procedury stosowane do modyfikacji organizmów produkujących żywność przewidują wstawienie nie jednej, ale wielu kopii genu do genomu organizmu odbiorcy. W tej sytuacji może występować wiele losowych przypadków mutagenicznych znacznie zwiększających prawdopodobieństwo uszkodzenia niektórych genów ważnych dla jakości pozyskiwanej żywności.

Ryzyko związane z manipulacjami genomami organizmów produkujących żywność jest typowe dla mechanizmów powodujących zmiany genetyczne za pomocą technik tworzenia rekombinacyjnego DNA. Nie można pomijać tego ryzyka, wskazując na pomidory “FlavrSavr” pierwsza handlowa odmiana uzyskana w wyniku inżynierii genetycznej) i mówiąc, że skoro nie było z nimi problemów, to i nie będzie ich z innymi organizmami transgenicznymi. Każdy transgeniczny organizm produkujący żywność będzie przechodził innego rodzaju mutacje i inaczej reagował na wprowadzoną informację genetyczną, co z kolei oznacza szeroki zakres zmian opisanych powyżej. Tak więc nie ma naukowo ważnych uzasadnień dla takich eksploatacji.

3. Niejednoznaczność informacji genetycznej.


Geny zawierają dwa różne rodzaje informacji: strukturalną i regulacyjną. Informacja strukturalna określa sekwencję aminokwasów w białkach i obejmuje kod genetyczny, który był odkryty w latach sześćdziesiątych. Z nielicznymi wyjątkami kod ten jest identyczny dla wszystkich organizmów ziemskich. Tak więc strukturalna informacja zawarta w danej części DNA jest przewidywalna.

Zupełnie inaczej jest jednak w przypadku informacji dotyczącej regulatorów. Transkrypcja, translacja, replikacja i rekombinacja, a także inne procesy z udziałem DNA i RNA są kontrolowane przez informację regulatorów zakodowaną w sekwencji DNA lub RNA.

Dekoder informacji regulacyjnej jest znacznie bardziej złożony i zmienny niż kod strukturalny. Co więcej, jest on inny u różnych organizmów - nawet komórki tego samego organizmu różnią się między sobą. Jest wiele przykładów w literaturze biologii molekularnej, w których rekombinowane geny, charakteryzowane w jednym typie komórek, są wyrażone w stu zagięciach, a w komórkach innego typu tego samego organizmu nawet w tysiącu zagięć wyższych poziomów. Takich różnic nie da się przewidzieć na podstawie wiedzy na temat sekwencji kwasów nukleinowych zrekombinowanego genu. Jedyną metodą, aby to poznać, jest zbieranie informacji doświadczalnych poprzez wprowadzenie genów do innego rodzaju komórek i sprawdzenie wyniku.

Jeżeli omówiony wyżej przypadek zaistnieje dla różnych typów komórek wewnątrz pojedynczego organizmu, wówczas poziom przewidywalności przy przenoszeniu genów między gatunkami, jak to ma miejsce w inżynierii genetycznej w rolnictwie, będzie równie duży lub większy.

Mechanizm leżący u podstawy i zaangażowany w “odczytywanie” informacji regulatorów jest dobrze znany i rozumiany. Białka regulacyjne występują w komórce i każde z nich jest zdolne do skanowania cząsteczek DNA (lub RNA). Mogą one rozpoznawać i przyłączać się do pojedynczych, specyficznych części kwasów nukleinowych. Taka reakcja łączenia się prowokuje biologiczne przypadki modulowania procesu takiego jak transkrypcja, translacja, replikacja, rekombinacja itp. Dana sekwencja może wpływać na te procesy w komórce tylko w przypadku obecności w niej białka, które ją rozpoznaje. Ponieważ w różnych typach komórek i u różnych gatunków występują różne białka regulacyjne, podana sekwencja DNA będzie funkcjonowała jako sygnał regulacyjny tylko w określonych rodzajach komórek u określonych gatunków. Nasza wiedza na temat “kodu regulacji” jest wciąż niepełna. Dlatego też nie potrafimy jeszcze badać sekwencji cząsteczki kwasu rybonukleinowego i przewidywać jej funkcji regulacyjnej w danym organizmie.

Wprowadzanie do genomu organizmu produkującego żywność sekwencji DNA, która posiada nie przewidziane działanie regulacyjne może zakłócić każdy z procesów komórkowych, w którym biorą udział DNA lub RNA, łącznie z replikacją, transkrypcją, rekombinacją i transpozycją.

Przerwanie transkrypcji lub translacji może zmienić poziom ekspresji lub czas ekspresji każdego białka normalnie wyrażony przez organizm produkujący żywność. To może zmienić zdolność do wywoływania alergii lub właściwości toksyczne żywności pochodzącej od tego organizmu, a także zmienić jego charakterystykę pokarmową lub inną.

Przerwanie lub zmiana mechanizmów replikacji, rekombinacji lub transpozycji może zmienić między innymi plastyczność lub stabilność genomu odbiorcy, prowadząc do wzrostu wskaźnika mutagenezy.



Brak komentarzy:

Prześlij komentarz

Oceń stan swojego zdrowia - dieta